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We present and analyze three distinct semidiscrete schemes for solving nonlocal geometric flows
incorporating perimeter terms. These schemes are based on the finite difference method, the finite element
method and the finite element method with a specific tangential motion. We offer rigorous proofs of
quadratic convergence under H1-norm for the first scheme and linear convergence under H1-norm for
the latter two schemes. All error estimates rely on the observation that the error of the nonlocal term
can be controlled by the error of the local term. Furthermore, we explore the relationship between the
convergence under L∞-norm and manifold distance. Extensive numerical experiments are conducted to
verify the convergence analysis, and demonstrate the accuracy of our schemes under various norms for
different types of nonlocal flows.
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1. Introduction

In this paper, we analyze and establish the convergence result of three distinct numerical methods for
evolving a closed plane curve Γ (t) under a nonlocal flow that involves perimeter. The normal velocity
of Γ (t) is determined by the formula

V = (κ − f (L)) N, (1.1)

where κ represents the curvature of the curve, f is a Lipschitz function, L is the perimeter, and N is the
unit inner normal vector. Equation (1.1) encompasses a wide range of geometric flows, including:

f (L) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2π
L , for area-preserving curve shortening flow of simple curves (Gage, 1986),

2π ind(Γ )
L , for area-preserving curve shortening flow of nonsimple

curves (Wang & Kong 2014),
2π−β

L , for curve flows with a prescribed rate of change in the enclosed

area (Dallaston & McCue 2016; Tsai & Wang 2018),
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2 W. JIANG ET AL.

where β ∈ (−∞, ∞), ind(Γ ) ∈ Z denotes the rational index (Carmo, 2016) of a nonsimple curve Γ .
The inclusion of an additional nonlocal force, f (L), enables us to control the area change of an evolving
curve. Indeed, by the theorem of turning tangents (do Carmo, 2016), the rate of area change can be
determined by (Deckelnick et al., 2005)

dA

dt
=

∫
Γ

V · N ds =

⎧⎪⎪⎨⎪⎪⎩
0, for f (L) = 2π

L and simple curves,

0, for f (L) = 2π ind(Γ )
L and nonsimple curves,

−β, for f (L) = 2π−β
L and simple curves.

In this paper, we focus on the study of curve evolutions that maintain their topological characteristics.
For simplicity, we always assume L > 0 during the whole evolution.

In recent years, significant attention has been paid to the theory development about nonlocal
geometric flows. One prominent instance is the area-preserving curve shortening flow (AP-CSF), which
is intricately connected to the mass-conserving Allen–Cahn equation (Rubinstein & Sternberg, 1992;
Chen et al., 2011), serving as its sharp-interface limit (Bronsard & Stoth, 1997). Additionally, AP-CSF
is a key model for attachment-limited kinetics (Carter et al., 1995; Dai et al., 2010; Mugnai & Seis,
2013), which describes the growth dynamics of a solid phase surrounded by an undercooled liquid
phase (Wagner, 1961). AP-CSF also plays a crucial role in image processing applications (Sapiro &
Tannenbaum, 1995; Sapiro, 2001; Dolcetta et al., 2002). Mathematically, the existence and convergence
results for AP-CSF, applicable to both simple and nonsimple closed curves, have been extensively
explored (Gage, 1986; Wang & Kong, 2014). Moreover, the study of curve flows with a prescribed
rate of area change has emerged in the context of analyzing contracting bubbles in fluid mechanics and
the Hele–Shaw problem (Dallaston & McCue, 2012, 2013, 2016), and its long-time evolution behavior
was addressed in Tsai & Wang (2018).

Extensive numerical methods have been employed to simulate the AP-CSF and curve flows with
a prescribed rate of change in the enclosed area. Examples of such methods for the AP-CSF include
the finite difference method (FDM) (Mayer, 2000), the MBO method (Ruuth & Wetton, 2003), the
crystalline algorithm (Ushijima & Yazaki, 2004), as well as PFEMs (Barrett et al., 2020; Pei & Li,
2023). Additionally, a rescaled spectral collocation scheme was proposed in Dallaston & McCue (2016)
for closed embedded plane curves with a prescribed rate of change in the enclosed area. However, there
has been relatively little research on the numerical analysis of these methods. Recently, in Jiang et al.
(2023), the authors proposed a semidiscrete finite element method (FEM) for the AP-CSF of simple
curves and established its convergence in H1-norm. In contrast to Dziuk’s parametric FEM (Dziuk, 1994)
for curve shortening flow (CSF), the nonlocal term in the geometric equations poses a major challenge
for numerical analysis and computation. Specifically, the errors introduced by the nonlocal term, which
involves the perimeter, are greatly influenced by the numerical errors resulting from the each length
of polygonals, e.g., using the piecewise linear FEM to approximate the smooth curve. Therefore, it is
crucial to carefully quantify the errors associated with length differences, as discussed in Sections 3 and
4. For recent advancements in parametric FEMs associated with CSF, we refer to Kovács et al. (2019);
Li (2020); Ye & Cui (2021); Hu & Li (2022).

In this paper, we propose three numerical schemes for nonlocal geometric flows involving perimeter
(1.1) and give their error estimates. Our main observation is that the difference between the nonlocal
term and its discrete version can be managed through the disparity of the local term. Specifically, we
introduce the following three different types of semidiscrete schemes:
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CONVERGENCE OF NONLOCAL FLOWS 3

• First, we employ FDM to discretize the parametrization equation of (1.1)

∂tX = 1

|∂ξ X|∂ξ

(
∂ξ X

|∂ξ X|
)

− f (L)

(
∂ξ X

|∂ξ X|
)⊥

, ξ ∈ S
1, (1.2)

where S
1 = [0, 2π ], (a, b)⊥ := (−b, a) denotes an anticlockwise rotation by π/2 and the periodic

function X(ξ , t) : S
1 × [0, T] → R

2 is a parameterization of the closed curve Γ ⊂ R
2.

Under certain appropriate assumptions, we demonstrate that the resulting semidiscrete scheme
converges quadratically in the discrete H1-norm as defined in Deckelnick & Nürnberg (2023a). The
proof is based on a careful Taylor expansion result and an averaged approximation of the normal
vector.

• Secondly, we utilize an FEM for a natural weak formulation of (1.2). The derived semidiscrete
scheme is based on our previous work on AP-CSF of simple curves (Jiang et al., 2023). An H1-
optimal error estimate follows from our key observation mentioned above.

• Thirdly, we introduce an artificial tangential motion (TM) and apply an FEM for an alternative
parametrization of the geometric equation

∂tX = ∂ξξ X

|∂ξ X|2 − f (L)N. (1.3)

This form of reparametrization was initially proposed by Deckelnick and Dziuk for the CSF
(Deckelnick & Dziuk, 1995) to improve the mesh quality during evolution. It was later interpreted
as a DeTurck trick by Elliot and Fritz in Elliott & Fritz (2017). Recently, the DeTurck trick has been
further applied to various geometric flows such as elastic flow (Pozzi & Stinner, 2023), anisotropic
CSF (Deckelnick & Nürnberg, 2023,b,c) and fourth-order flows (Deckelnick & Nürnberg, 2024).
We emphasize that we have successfully extended the DeTurck trick to the general nonlocal flow
case. The resulting semidiscrete scheme yields an asymptotic equidistribution property, as well as
an H1-optimal error estimate.

As a by-product, we further explore the convergence of the schemes under manifold distance, a topic
extensively discussed in the numerical computation community (Bao & Zhao, 2021; Zhao et al., 2021;
Bao et al., 2023; Jiang et al., 2024a,b). We prove that, for simple curves, convergence in the function
L∞-norm implies convergence under the manifold distance. Moreover, we prove an optimal convergence
of the finite difference scheme under the manifold distance.

The rest of this paper is organized as follows. In Section 2, we propose the semidiscrete schemes
and provide the error estimates for the FDM. In Section 3, we consider the FEM, and the FEM-TM.
Section 4 aims to establishing a connection between the convergence of the manifold distance and L∞-
norm. Section 5 presents extensive numerical experiments for the three different numerical schemes
and various types of nonlocal flows. The numerical results demonstrate our convergence analysis
results in both the H1-norm and the manifold distance. Moreover, a better mesh quality is achieved
for the finite element method with the aid of tangential motions. Finally, we draw some conclusions in
Section 6.

We conclude this section with some comments on notations. Throughout the paper, the quantities
related to the true solution are denoted as capital letters, while those related to the discrete solution
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4 W. JIANG ET AL.

are denoted as lowercase letters. Specifically, for the solution of (1.2), we denote T = ∂ξ X
|∂ξ X| and N =

T⊥ by the unit tangent and inner normal of the curve, respectively. Therefore, (1.2) can be rewritten
as

∂tX = 1

|∂ξ X|∂ξT − f (L)N, ξ ∈ S
1; X(ξ , 0) = X0(ξ). (1.4)

Throughout the paper, we maintain the orientation of parametrization X such that the rotation index
ind(Γ ) is a non-negative constant (Escher & Ito, 2005). For an embedded simple curve, this sign
convention ensures that a unit circle has a positive constant curvature.

2. Finite difference method

In this section, we utilize an FDM to solve the equation (1.2). For spatial discretization, we utilize a
uniform mesh, where the equidistributed grid points Gh := {ξ1, . . . , ξN} ⊂ S

1 are given by ξj = jh, j =
0, . . . , N for h = 2π/N with N ≥ 2. We use a periodic index, i.e., aj = aj±N when involved. Denote

Xj = X(ξj), Ẋj = ∂tX(ξj), and set

Qj = |Xj − Xj−1|, Tj = Xj − Xj−1

Qj
, j = 1, . . . , N.

Let xh : Gh → R
2 be a grid function. We define the discrete length element qj, the discrete tangent τj

and normal nj as

qj = |xj − xj−1|, τj = xj − xj−1

qj
, nj = τ⊥

j , (2.1)

where xj = xh(ξj) denotes the vertex of the polygon that approximates the curve. Denote lh =
N∑

j=1
qj

by the perimeter of the polygon. Throughout the article, we denote C by a general constant which is
independent of the mesh size h and might vary from line to line.

ASSUMPTION 2.1. Suppose that the solution of (1.2) satisfies X ∈ C1
(
[0, T], C4(S1)

)
, i.e.,

K1(X) := ‖X‖C1([0,T],C4(S1)) < ∞,

and there exist constants 0 < C1 < C2 such that

C1 ≤
∣∣∣∂ξ X(ξ , t)

∣∣∣ ≤ C2, ∀ (ξ , t) ∈ S
1 × [0, T]. (2.2)

Under this assumption, we have the following results, which have been established in Deckelnick &
Nürnberg (2023a).
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CONVERGENCE OF NONLOCAL FLOWS 5

LEMMA 1 (Deckelnick & Nürnberg, 2023a, Lemmas 3.1, 3.3). Under Assumption 2.1, there exists h0 > 0
such that for 0 < h ≤ h0, the following expressions hold:

C1 ≤ Qj/h ≤ C2,
Qj + Qj+1

2h
= |∂ξ X(ξj)| + O(h2), (2.3a)

Tj + Tj+1 = 2 T(ξj) + O(h2), Tj = 1

2

(
T(ξj) + T(ξj−1)

)
+ O(h2), (2.3b)

Tj+1 − Tj

h
= ∂ξT(ξj) + O(h2),

Ẋj+1 − Ẋj

h
= 1

2

(
∂t∂ξ X(ξj) + ∂t∂ξ X(ξj+1)

)
+ O(h2), (2.3c)∣∣∣τ⊥

j+1/2 − N(ξj)

∣∣∣ ≤ 2

|Tj + Tj+1|
(
|Tj − τj| + |Tj+1 − τj+1|

)
+ Ch2, (2.3d)

where τj+1/2 := τj+τj+1
|τj+τj+1| represents the averaged vertex tangent.

For later use, the direct computation from (1.4) gives

∂t|∂ξ X| = ∂t∂ξ X · T = ∂ξ (∂tX · T) − ∂tX · ∂ξT = −|∂ξ X||∂tX|2 − f (L)|∂ξ X|∂tX · N. (2.4)

For any grid function u : Gh → R
2, or Y ∈ C(S1), we define the backward difference quotient as

δuj := uj − uj−1

h
, δYj = Yj − Yj−1

h
= Y(ξj) − Y(ξj−1)

h
, j = 1, . . . , N.

Moreover, to measure the error, we introduce the following discrete norms:

‖u‖L2
G

:=
⎛⎝h

N∑
j=1

|uj|2
⎞⎠

1
2

, ‖u‖H1
G

:=
⎛⎝h

N∑
j=1

(|uj|2 + |δuj|2
)⎞⎠

1
2

. (2.5)

DEFINITION 1. A semidiscrete finite difference approximation of (1.2) is to find a grid function xh : Gh ×
[0, T] → R

2 such that

ẋj = 2

qj + qj+1

(
τj+1 − τj

)
− f (lh)τ

⊥
j+1/2 in (0, T]; xj(0) = X0(ξj). (2.6)

THEOREM 1. Let X(ξ , t) be a solution of (1.2) that satisfies Assumption 2.1. Then, there exists a constant
h0 > 0 such that for all 0 < h ≤ h0, there is a unique finite difference semidiscrete solution xh(t) in the
sense of (2.6). Furthermore, the following error estimate holds:

sup
t∈[0,T]

‖X(t) − xh(t)‖H1
G

≤ Ch2, (2.7)

where the constants h0 and C depend on C1, C2, K1(X), T and f .

Before giving the proof of Theorem 1, we compute the evolution equation for the discrete length qj.
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6 W. JIANG ET AL.

LEMMA 2. Suppose xh is the finite difference semidiscrete solution in the sense of (2.6), then, it holds

q̇j + qj−1+qj
4 |ẋj−1|2 + qj+qj+1

4 |ẋj|2 + qj−1+qj
4 f (lh)ẋj−1 · τ⊥

j−1/2 + qj+1+qj
4 f (lh)ẋj · τ⊥

j+1/2 = 0. (2.8)

Proof. We begin by computing q̇j as

q̇j = (
ẋj − ẋj−1

) · τj

= τj ·
(

2

qj + qj+1

(
τj+1 − τj

) − f (lh)τ⊥
j+1/2 − 2

qj + qj−1

(
τj − τj−1

) + f (lh)τ⊥
j−1/2

)

= 2

qj + qj+1

(
τj · τj+1 − 1

) − f (lh)τ⊥
j+1/2 · τj − 2

qj + qj−1

(
1 − τj · τj−1

) + f (lh)τ⊥
j−1/2 · τj

= 2

qj + qj+1

(
τj · τj+1 − 1

) − f (lh)τ⊥
j+1/2 · τj + 2

qj + qj−1

(
τj · τj−1 − 1

) − f (lh)τ⊥
j−1/2 · τj−1

=: Jj + Jj−1, (2.9)

where for the last second equality, we have employed the property

τ⊥
j−1/2 · τj = τ⊥

j−1/|τj + τj−1| · τj = −τj−1 · τ⊥
j /|τj + τj−1| = −τj−1 · τ⊥

j−1/2. (2.10)

Multiplying (2.6) by
qj+qj+1

4 f (lh)τ
⊥
j+1/2, we obtain

qj + qj+1

4
f (lh)τ

⊥
j+1/2 · ẋj + qj + qj+1

4
f (lh)

2 − f (lh)τ
⊥
j+1/2 · τj+1 − τj

2
= 0,

which can be simplified as

qj + qj+1

4
f (lh)τ

⊥
j+1/2 · ẋj + qj + qj+1

4
f (lh)

2 + f (lh)τ
⊥
j+1/2 · τj = 0, (2.11)

by using (2.10). Combining (2.6) and (2.11), we get

Jj = 2

qj + qj+1

(
−1

2
|τj − τj+1|2

)
− f (lh)τ⊥

j+1/2 · τj

= − 1

qj + qj+1

∣∣∣ẋj + f (lh)τ⊥
j+1/2

∣∣∣ 2
(

qj + qj+1

2

)2
− f (lh)τ⊥

j+1/2 · τj

= −qj + qj+1

4

(
|ẋj|2 + 2f (lh)τ⊥

j+1/2 · ẋj + f (lh)2
)

− f (Lh)τ⊥
j+1/2 · τj

= −qj + qj+1

4
|ẋj|2 − qj + qj+1

2
f (lh)τ⊥

j+1/2 · ẋj − qj + qj+1

4
f (lh)2 − f (lh)τ⊥

j+1/2 · τj

= −qj + qj+1

4
|ẋj|2 − qj + qj+1

4
f (lh)τ⊥

j+1/2 · ẋj.

Plugging this into (2.9) yields (2.8), and the proof is completed. �
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CONVERGENCE OF NONLOCAL FLOWS 7

For the readers’ convenience, we sketch the proof of Theorem 1. The main idea involves analyzing
three types of errors: total error

∫ t
0 h

∑N
j=1 |ėj|2 ds, the error in tangents

∑N
j=1 qj|Tj − τj|2 and the length

difference error
∑N

j=1(Qj − qj)
2(t).

Outline of proof . The proof utilizes the continuity argument. Let T∗ > 0 be the maximal time for which
xh solves (2.6) with a suitable estimate. For t ∈ [0, T∗] we establish the following estimates:

(1) Let Rj and R̃j be the local truncation errors for (1.2) and (2.4), respectively. We show that

Rj = O(h2), R̃j = O(h3).

(2) Denote ej(t) = Xj(t) − xj(t). By subtracting (2.6) from (2.16), we derive the following stability
estimate based on Step (1):∫ t

0
h

N∑
j=1

|ėj|2 ds + sup
0≤s≤t

N∑
j=1

qj|Tj − τj|2 ≤ Ch4 + C
∫ t

0

1

h

N∑
j=1

(Qj − qj)
2 ds.

This step uses the key observation that the global perimeter difference can be reduced to a
summation of local length differences, yielding:

|L − lh| ≤
N∑

j=1

|Qj − qj| + Ch2.

(3) The length difference estimate implies

1

h

N∑
j=1

(Qj − qj)
2(t) ≤ C

∫ t

0
h

N∑
j=1

|ėj|2 ds + C sup
0≤s≤t

N∑
j=1

qj|Tj − τj|2 + Ch4.

Applying Step (2) again allows us to obtain the desired estimate (2.7) for t ∈ (0, T∗].

Combining the above steps, the continuity argument enables us to extend the initial solution time T∗
to T , ensuring that all the estimates hold in the interval [0, T]. �

Proof of Theorem 1. We define

T∗ = sup
{

t ∈ [0, T] : xh solves (2.6) with C1
2 ≤ qj(t)

h
≤ 2C2, max

j=1,...,N
|Tj(t) − τj(t)| ≤ h

5
4

}
.

(2.12)

Clearly T∗ > 0. Noticing the nonlinear terms in (2.6) are locally Lipschitz with respect to xj, we get local
existence and uniqueness using standard ODE theory. Furthermore, since qj(0) = Qj(0) and τj(0) =
Tj(0), the desired estimate also holds by continuity. By (2.12) and the Lipschitz continuity of f , we have
∀ t ∈ [0, T∗],

2πC1 ≤ L ≤ 2πC2, πC1 ≤ lh ≤ 4πC2, |f (L)| ≤ C, (2.13)

where C is a constant, depending on C1, C2 and f . We claim that there exists a constant h1 > 0 such that
for 0 < h ≤ h1, it holds

max
j=1,...,N

|ẋj(t)| ≤ C, ∀ t ∈ [0, T∗], (2.14)
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8 W. JIANG ET AL.

where C depends on C1, C2 and f . Indeed, by (2.6), (2.3c), (2.12) and (2.13), we obtain

|ẋj|2 ≤ 2

∣∣∣∣∣ 2

qj + qj+1

(
τj+1 − τj

)∣∣∣∣∣ 2 + 2
∣∣∣f (lh)τ⊥

j+1/2

∣∣∣ 2 ≤ C

∣∣∣∣ τj+1 − τj

h

∣∣∣∣ 2 + C

≤ C

(∣∣∣∣Tj+1 − Tj

h

∣∣∣∣ + 2

h
max

k=1,...,N
|Tk − τk|

)2
+ C ≤ C.

Moreover, based on (2.3b), we have

min
j=1,...,N

|Tj + Tj+1| ≥ 1, (2.15)

when h is sufficiently small. Define the truncation error as

Rj := Ẋj − 2

Qj + Qj+1

(
Tj+1 − Tj

) + f (L)N(ξj), (2.16)

R̃j := Q̇j + Qj−1+Qj
4 |Ẋj−1|2 + Qj+Qj+1

4 |Ẋj|2

+ Qj−1+Qj
4 f (L)Ẋj−1 · N(ξj−1) + Qj+1+Qj

4 f (L)Ẋj · N(ξj). (2.17)

(1) Estimates of the truncation error Rj, R̃j. Employing (1.2), (2.3a) and (2.3c), one gets

Rj = Ẋj − 2

Qj + Qj+1

(
Tj+1 − Tj

) + f (L)N(ξj)

= Ẋj − 1

|∂ξ X(ξj)| + O(h2)

(
∂ξT(ξj) + O(h2)

)
+ f (L)N(ξj)

= Ẋj − 1

|∂ξ X(ξj)|
(

1 + O(h2)
)

·
(
∂ξT(ξj) + O(h2)

)
+ f (L)N(ξj)

= Ẋj − 1

|∂ξ X(ξj)|∂ξT(ξj) + f (L)N(ξj) + O(h2)

= O(h2). (2.18)

Similarly, applying (2.4), (2.3b) and (2.3c) and using the regularity of X (see Assumption 2.1) again,
we derive

Q̇j = (
Ẋj − Ẋj−1

) · Tj

= h

4

(
∂t∂ξ X(ξj−1) + ∂t∂ξ X(ξj)

) · (T(ξj) + T(ξj−1)
) + O(h3)

= h

2
∂t∂ξ X(ξj−1) · T(ξj−1) + h

2
∂t∂ξ X(ξj) · T(ξj)

− h

4
(∂t∂ξ X(ξj) − ∂t∂ξ X(ξj−1)) · (T(ξj) − T(ξj−1)) + O(h3)

= h

2
∂t∂ξ X(ξj−1) · T(ξj−1) + h

2
∂t∂ξ X(ξj) · T(ξj) + O(h3)

= h

2

(
−|∂ξ X||∂tX|2(ξj−1) − f (L)|∂ξ X|(ξj−1)∂tX(ξj−1) · N(ξj−1)

)
+ h

2

(
−|∂ξ X||∂tX|2(ξj) − f (L)|∂ξ X|(ξj)∂tX(ξj) · N(ξj)

)
+ O(h3),
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CONVERGENCE OF NONLOCAL FLOWS 9

which together with (2.3a) implies

R̃j = Q̇j + Qj−1 + Qj

4
|Ẋj−1|2 + Qj + Qj+1

4
|Ẋj|2

+ Qj−1 + Qj

4
f (L)Ẋj−1 · N(ξj−1) + Qj+1 + Qj

4
f (L)Ẋj · N(ξj) = O(h3). (2.19)

(2) Stability. Denote ej(t) = Xj(t) − xj(t). Subtracting (2.6) from (2.16), one gets

ėj − 2

qj + qj+1

(
(Tj+1 − τj+1) − (Tj − τj)

)
= −f (L)

(
N(ξj) − τ⊥

j+1/2

)
− (

f (L) − f (lh)
)
τ⊥

j+1/2

+ 2
(qj − Qj) + (qj+1 − Qj+1)

(Qj + Qj+1)(qj + qj+1)

(
Tj+1 − Tj

)
+ Rj

=: I1
j + I2

j + I3
j + I4

j .

Multiplying both sides with 1
2 (qj + qj+1)ėj and summing together over all j = 1, . . . , N, we obtain

1

2

N∑
j=1

(qj + qj+1)|ėj|2 −
N∑

j=1

(
(Tj+1 − τj+1) − (Tj − τj)

)
· ėj =

4∑
k=1

N∑
j=1

1

2
(qj + qj+1)I

k
j · ėj.

Applying (2.12), Young’s inequality, Assumption 2.1 and (2.3a), we arrive at

−
N∑

j=1

(
(Tj+1 − τj+1) − (Tj − τj)

)
· ėj

= 1

2

d

dt

N∑
j=1

qj|Tj − τj|2 + h
N∑

j=1

(
Qj − qj

Qj
δẊj · (Tj − τj) + qj

2Qj

(
δẊj · Tj

)
|Tj − τj|2

)

≥ 1

2

d

dt

N∑
j=1

qj|Tj − τj|2 − C
N∑

j=1

(
1

h
(Qj − qj)

2 + qj|Tj − τj|2
)

,

where for the first equality, we used the result in Deckelnick & Nürnberg (2023a) (cf. page 9 in
Deckelnick & Nürnberg (2023a)). Employing (2.3d), (2.12), (2.13), (2.15) and Young’s inequality,
we get

N∑
j=1

qj + qj+1

2
I1
j · ėj ≤ Ch

N∑
j=1

∣∣N(ξj) − τ⊥
j+1/2

∣∣|ėj| ≤ C(ε)h
N∑

j=1

|Tj − τj|2 + εh
N∑

j=1

|ėj|2 + C(ε)h4.
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10 W. JIANG ET AL.

Similarly, using (2.3a), (2.3c), Young’s inequality and (2.18), one obtains

N∑
j=1

1

2
(qj + qj+1)I3

j · ėj ≤ C
N∑

j=1

(|Qj − qj| + |Qj+1 − qj+1|)|ėj| ≤ εh
N∑

j=1

|ėj|2 + C(ε)

h

N∑
j=1

|Qj − qj|2,

N∑
j=1

1

2
(qj + qj+1)I4

j · ėj ≤ εh
N∑

j=1

|ėj|2 + C(ε)h4.

It remains to estimate the term related to I2
j . First, we estimate the error of the perimeter by applying

the trapezoidal quadrature formula and (2.3a)

|L − lh| =
∣∣∣∣ ∫

S1
|∂ξ X| dξ −

N∑
j=1

qj + qj+1

2

∣∣∣∣ =
∣∣∣∣h N∑

j=1

|∂ξ X|(ξj) + O(h2) −
N∑

j=1

qj + qj+1

2

∣∣∣∣
=

∣∣∣∣ N∑
j=1

Qj + Qj+1

2
+ O(h2) −

N∑
j=1

qj + qj+1

2

∣∣∣∣ ≤
N∑

j=1

|Qj − qj| + Ch2.

(2.20)

This immediately yields

N∑
j=1

1

2
(qj + qj+1)I

2
j · ėj ≤ Ch

N∑
j=1

|L − lh||ėj| ≤ C(ε)|L − lh|2 + εh
N∑

j=1

|ėj|2

≤ C(ε)

⎛⎝ N∑
j=1

|Qj − qj|
⎞⎠2

+ C(ε)h4 + εh
N∑

j=1

|ėj|2

≤ C(ε)
1

h

N∑
j=1

|Qj − qj|2 + C(ε)h4 + εh
N∑

j=1

|ėj|2.

By combining the above inequalities, (2.12) and choosing ε to be sufficiently small, we are led to

h
N∑

j=1

|ėj|2 + d

dt

N∑
j=1

qj|Tj − τj|2 ≤ Ch4 + C
N∑

j=1

(
1

h
(Qj − qj)

2 + qj|Tj − τj|2
)

.

Through integration and utilizing Gronwall’s inequality, we obtain

∫ t

0
h

N∑
j=1

|ėj|2 ds + sup
0≤s≤t

N∑
j=1

qj|Tj − τj|2 ≤ Ch4 + C
∫ t

0

1

h

N∑
j=1

(Qj − qj)
2 ds, (2.21)

for 0 ≤ t ≤ T∗, where C is a constant, depending on C1, C2, K1(X), T and f .
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CONVERGENCE OF NONLOCAL FLOWS 11

(3) Length difference estimate. By using (2.14) and (2.20), we can derive the following estimates

(
|ẋj|2 − |Ẋj|2

)
≤ (|ẋj| + |Ẋj|)|ẋj − Ẋj| ≤ C|ėj|, f (lh) − f (L) ≤ C

N∑
j=1

|Qj − qj| + Ch2.

Subtracting (2.17) from (2.8), integrating from 0 to t, and applying (2.3d) together with the above
estimate, we get

|Qj − qj|(t) ≤
∫ t

0
|Q̇j − q̇j|(s) ds + |Qj − qj|(0)

≤ C
∫ t

0
|qj − Qj| + |qj+1 − Qj+1| + |qj−1 − Qj−1| ds

+ Ch
∫ t

0
|τj − Tj| + |τj+1 − Tj+1| + |τj−1 − Tj−1| ds

+ Ch
∫ t

0

N∑
j=1

|Qj − qj| ds + Ch3 + Ch
∫ t

0
|ėj−1| + |ėj| ds +

∫ t

0
|R̃j| ds.

This together with (2.19) yields

1

h

N∑
j=1

(Qj − qj)
2(t) ≤ C

∫ t

0
h

N∑
j=1

|ėj|2 ds + C
∫ t

0

1

h

N∑
j=1

(Qj − qj)
2 ds + C

∫ t

0
h

N∑
j=1

|Tj − τj|2 ds + Ch4.

Applying Gronwall’s inequality, we get

1

h

N∑
j=1

(Qj − qj)
2(t) ≤ C

∫ t

0
h

N∑
j=1

|ėj|2 ds + C
∫ t

0

N∑
j=1

qj|Tj − τj|2 ds + Ch4

≤ C
∫ t

0
h

N∑
j=1

|ėj|2 ds + C sup
0≤s≤t

N∑
j=1

qj|Tj − τj|2 + Ch4

≤ Ch4 + C
∫ t

0

1

h

N∑
j=1

(Qj − qj)
2(s) ds, (2.22)

where for the last inequality we utilized (2.21). Hence Gronwall’s inequality gives

1

h

N∑
j=1

(Qj − qj)
2(t) ≤ Ch4, 0 ≤ t ≤ T∗. (2.23)
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12 W. JIANG ET AL.

This together with (2.21) implies

∫ T∗

0
h

N∑
j=1

|ėj|2 ds + sup
0≤t≤T∗

N∑
j=1

qj|Tj − τj|2 ≤ Ch4. (2.24)

Now we are ready to complete the proof by a continuity argument. It follows from (2.24) that there
exists h2 > 0 such that when h ≤ h2,

|Tj − τj|(t) ≤ h− 1
2

(
h

N∑
k=1

|Tk − τk|2(t)
) 1

2

≤ Ch− 1
2 h2 ≤ 1

2 h
5
4 , 0 ≤ t ≤ T∗.

On the other hand, it can be easily derived from (2.23) that

|Qj(t) − qj(t)| ≤ Ch3/2, 0 ≤ t ≤ T∗,

which together with (2.3a) yields

2
3 C1 ≤ qj(t)/h ≤ 3

2 C2, h ≤ h3.

By continuity we can extend T∗ such that

C1
2 ≤ qj(t)

h
≤ 2C2, max

j=1,...,N
|Tj(t) − τj(t)| ≤ h

5
4 .

This contradicts (2.12) if T∗ < T . Therefore, T∗ = T . As for the estimate of ej, we first notice

δej = δXj − δxj = Qj(Tj − τj)

h
+ (Qj − qj)

h
τj.

Recalling (2.23) and (2.24), we immediately get

h
N∑

j=1

|ej|2 ≤ C
∫ t

0
h

N∑
j=1

|ėj|2 ds ≤ Ch4, h
N∑

j=1

|δej|2 ≤ Ch
N∑

j=1

(
|Tj − τj|2 + (Qj − qj)

2

h2

)
≤ Ch4,

which yields

‖X(t) − xh(t)‖H1
G

=
⎛⎝h

N∑
j=1

(|ej|2 + |δej|2
)⎞⎠

1
2

≤ Ch2, 0 ≤ t ≤ T ,

and the proof is completed by taking h0 = min{h1, h2, h3}. �
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CONVERGENCE OF NONLOCAL FLOWS 13

3. Finite element methods

In this section, we present two FEMs based on different formulations and establish their error estimates.
The parametrization (1.2) naturally leads to a weak formulation: for any v ∈ (H1(S1))2, it holds

∫
S1

|∂ξ X|∂tX · v dξ +
∫
S1

T · ∂ξ v dξ +
∫
S1

f (L)(∂ξ X)⊥ · v dξ = 0. (3.1)

For spatial discretization, let 0 = ξ0 < ξ1 < . . . < ξN = 2π be a partition of S1. We denote hj = ξj−ξj−1
as the length of the interval Ij := [ξj−1, ξj] and h = max

j
hj. We assume that the partition and the exact

solution are regular in the following senses, respectively:

ASSUMPTION 3.1. There exist constants cp and cP such that

min
j

hj ≥ cph, |hj+1 − hj| ≤ cPh2, 1 ≤ j ≤ N.

ASSUMPTION 3.2. Suppose the solution of (1.2) satisfies X ∈ W1,∞ (
[0, T], H2(S1)

)
, i.e.,

K2(X) := ‖X‖W1,∞([0,T],H2(S1)) < ∞,

and there exist constants 0 < C1 < C2 such that (2.2) holds.

We define the following finite element space consisting of piecewise linear functions satisfying
periodic boundary conditions:

Vh =
{

v ∈ C(S1,R2) : v|Ij
∈ P1(Ij), 1 ≤ j ≤ N, v(ξ0) = v(ξN)

}
,

where P1 denotes all polynomials with degrees at most 1. For any continuous function v ∈ C(S1,R2),
the linear interpolation Ihv ∈ Vh is uniquely determined through Ihv(ξj) = v(ξj) for all 1 ≤ j ≤ N and

can be explicitly written as Ihv(ξ) =
N∑

j=1
v(ξj)ϕj(ξ), where ϕj represents the standard Lagrange basis

function satisfying ϕj(ξi) = δij.

3.1 FEM with only the normal motion

In this part, we present an FEM based on the original parametrization (1.2).

DEFINITION 2. We call a function

xh(ξ , t) =
N∑

j=1

xj(t)ϕj(ξ) : S1 × [0, T] → R
2 (3.2)
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14 W. JIANG ET AL.

is a semidiscrete solution of (1.2) if it satisfies xh(ξ , 0) = IhX0 and for all vh ∈ Vh, it holds∫
S1

qh∂txh · vh dξ +
∫
S1

τh · ∂ξ vh dξ +
∫
S1

h2qh

6
∂ξ ∂txh · ∂ξ vh dξ +

∫
S1

f (lh)(∂ξ xh)
⊥ · vh dξ = 0,

(3.3)

where

qh = |∂ξ xh| =
N∑

j=1

qj

hj
χIj

, τh = ∂ξ xh

|∂ξ xh|
=

N∑
j=1

xj − xj−1

qj
χIj

, (3.4)

represent the discrete length element and unit tangent vector, respectively, lh represents the perimeter of

the evolved polygon with vertices xj, and h =
N∑

j=1
hjχIj

with χ being the characteristic function.

REMARK 1. Compared to the original formulation (3.1), here an extra term
∫
S1

h2|∂ξ xh|
6 ∂ξ ∂txh · ∂ξ vh dξ is

introduced in (3.3), which reduces to the so-called mass-lumped scheme (3.5). Clearly, this term does not
affect the convergence order for a linear FEM. As was interpreted in Dziuk (1999); Jiang et al. (2023),
this mass-lumped version can preserve the length shortening property for the CSF/AP-CSF, which was
missing for the original formula.

Taking vh = (ϕj, 0) and vh = (0, ϕj) for j = 1, . . . , N in (3.3), we are led to the following 2N ordinary
differential equations:

qj + qj+1

2
ẋj = τj+1 − τj − f (lh)(xj+1 − xj−1)

⊥, (3.5)

where τj is the discrete tangent defined as (2.1). Furthermore, we have the following identities

q̇j = − 1

qj + qj+1
|τj+1 − τj|2 − 1

qj + qj−1
|τj−1 − τj|2 + τj ·

(
rj − rj−1

)
(3.6)

= −qj + qj+1

4
|ẋj − rj|2 − qj + qj−1

4
|ẋj−1 − rj−1|2 + τj ·

(
rj − rj−1

)
, (3.7)

where for simplicity we denote

rj = −f (lh)
njqj + nj+1qj+1

qj + qj+1
. (3.8)

THEOREM 2. Let X(ξ , t) be a solution of (1.2) satisfying Assumption 3.2. Assume that the partition of S1

satisfies Assumption 3.1. Then there exists h0 > 0 such that for all 0 < h ≤ h0, there exists a unique
semidiscrete solution xh for (3.3). Furthermore, the solution satisfies∫ T

0
‖∂tX − ∂txh‖2

L2 dt + sup
t∈[0,T]

‖X − xh‖2
H1 ≤ Ch2, (3.9)

where h0 and C depend on cp, cP, C1, C2, T , K2(X) and f .
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CONVERGENCE OF NONLOCAL FLOWS 15

Before presenting the proof of Theorem 2, we first list a lemma which will be used later.

LEMMA 3 (Jiang et al., 2023, Lemma 4.2). Under Assumptions 3.1 and 3.2, suppose further

∫
S1

∣∣T − τh

∣∣ 2qh dξ + ‖|∂ξ X| − qh‖2
L2 ≤ Ch2, ∀ t ∈ [0, T∗],

then there exists a constant h0 such that for any 0 < h ≤ h0, it holds

inf
ξ

qh ≥ 3C1/4, sup
ξ

qh ≤ 3C2/2, ∀ t ∈ [0, T∗],

where C1 and C2 are the lower and upper bounds of |∂ξ X| shown in (2.2).

Proof of Theorem 2. Similar to the proof of Theorem 1, we apply the continuity argument. Define

T∗ = sup{t ∈ [0, T] : (3.3) has a unique solution xh and inf qh ≥ C1/2, sup qh ≤ 2C2}. (3.10)

Since the nonlinear terms in (3.5) are locally Lipschitz with respect to xj, the local existence and
uniqueness follow from standard ODE theory, and thus T∗ > 0. Moreover, due to the Lipschitz property
of f and Assumption (3.10), for any t ∈ [0, T∗], it holds that

2πC1 ≤ L ≤ 2πC2, πC1 ≤ lh ≤ 4πC2, |f (L)| ≤ C, (3.11)

where C is a constant, depending on C1, C2, f .

(1) Stability. Taking the difference between (3.1) and (3.3), and choosing vh = Ih(∂tX) − ∂txh ∈ Vh,
we get

∫
S1

|∂tX − ∂txh|2qh dξ +
∫
S1

(
T − τh

) (
∂ξ ∂tX − ∂ξ ∂txh

)
dξ

=
∫
S1

∂tX · (qh − |∂ξ X|) (Ih∂tX − ∂txh

)
dξ +

∫
S1

h2qh

6
∂ξ ∂txh · ∂ξ

(
Ih∂tX − ∂txh

)
dξ

+
∫
S1

qh(∂tX − ∂txh) · (∂tX − Ih∂tX) dξ +
∫
S1

(
T − τh

) ·
(
∂ξ ∂tX − ∂ξ Ih∂tX

)
dξ

+
∫
S1

f (L)
(
∂ξ X − ∂ξ xh

)⊥ · (∂txh − Ih∂tX
)

dξ

+
∫
S1

(
f (L) − f (lh)

) (
∂ξ xh

)⊥ · (∂txh − Ih∂tX
)

dξ =: J1 + J2 + J3 + J4 + J5 + J6.
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16 W. JIANG ET AL.

The estimates of the second term on the left side and Jj for 1 ≤ j ≤ 4 can be found in Dziuk (1999,
Lemma 5.1) or Jiang et al. (2023, Lemma 4.1), which can be summarized as follows:

∫
S1

(
T − τh

) ·
(
∂ξ ∂tX − ∂ξ ∂txh

)
dξ

≥ 1

2

d

dt

(∫
S1

|T − τh|2qh dξ

)
− C‖∂ξ ∂tX‖L∞

(∫
S1

|T − τh|2qh dξ + ‖|∂ξ X| − qh‖2
L2

)
,

J1 + J2 + J3 + J4 ≤ ε

∫
S1

∣∣∂tX − ∂tXh

∣∣ 2qh dξ + C(ε)
∥∥∂tX

∥∥2
L∞ ‖|∂ξ X| − qh‖2

L2 + C(ε)h2‖∂tX‖2
H1

+ C
∫
S1

|T − τh|2qh dξ ,

where ε is a generic positive constant which will be chosen later. For J5 and J6, in view of the
Lipschitz property of f , (3.11), and the identity

|∂ξ X − ∂ξ xh|2 = (|∂ξ X| − qh)
2 + |∂ξ X|qh|T − τh|2, (3.12)

applying similar techniques in Jiang et al. (2023) (cf. proof of Lemma 4.1), we can get

J5 =
∫
S1

f (L)
(
∂ξ X − ∂ξ xh

)⊥ · (∂tX − Ih∂tX
)

dξ +
∫
S1

f (L)
(
∂ξ X − ∂ξ xh

)⊥ · (∂txh − ∂tX
)

dξ

≤ C
∥∥∥∂ξ X

∥∥∥
L∞

∫
S1

∣∣T − τh

∣∣ 2qh dξ + C
∫
S1

(|∂ξ X| − qh)
2 dξ + Ch2‖∂tX‖2

H1

+ C(ε)

∥∥∥∂ξ X
∥∥∥

L∞

∫
S1

∣∣T − τh

∣∣ 2qh dξ + C(ε)‖|∂ξ X| − qh‖2
L2 + ε

∫
S1

∣∣∂txh − ∂tX
∣∣ 2qh dξ ,

J6 =
∫
S1

(
f (L) − f (lh)

) (
∂ξ xh

)⊥· (∂tX − Ih∂tX
)

dξ +
∫
S1

(
f (L) − f (lh)

) (
∂ξ xh

)⊥· (∂txh − ∂tX
)

dξ

≤ C|L − lh|2 + C‖∂tX − Ih∂tX‖2
L2 + C(ε)|L − lh|2 + ε

∫
S1

qh

∣∣∂txh − ∂tX
∣∣ 2 dξ

≤ C(ε)‖|∂ξ X| − qh‖2
L2 + Ch2‖∂tX‖2

H1 + ε

∫
S1

qh

∣∣∂txh − ∂tX
∣∣ 2 dξ .

Here we use the inequalities |L − lh|2 ≤ ‖|∂ξ X| − qh‖2
L1 ≤ C‖|∂ξ X| − qh‖2

L2 . Combining all the
above estimates, we are led to

∫
S1

|∂tX − ∂txh|2qh dξ + 1

2

d

dt

∫
S1

|T − τh|2qh dξ ≤ 4ε

∫
S1

|∂tX − ∂txh|2qh dξ

+ C(ε)h2‖∂tX‖2
H2 + C(ε, K2(X))‖|∂ξ X| − qh‖2

L2 + C(ε, K2(X))

∫
S1

|T − τh|2qh dξ .
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CONVERGENCE OF NONLOCAL FLOWS 17

Choosing ε small enough, integrating both sides with respect to time from 0 to t and applying
Gronwall’s argument, we arrive at∫ t

0

∫
S1

|∂tX − ∂txh|2qh dξ ds + sup
0≤s≤t

∫
S1

|T − τh|2qh dξ ≤ C
∫ t

0
‖|∂ξ X| − qh‖2

L2 ds + Ch2,

(3.13)

where C is a constant, depending on cp, cP, C1, C2, T , K2(X) and f .

(2) Length difference estimate. Applying the Lipschitz property of f and (3.11), a mild modification
of the proof of Jiang et al. (2023, Lemma 4.3, Lemma 4.4) enables us to establish the same length
difference estimate as in Jiang et al. (2023):

‖|∂ξ X| − qh‖2
L2 ≤ C

∫ t

0

∫
S1

∣∣∂tX − ∂txh

∣∣ 2qh dξ ds + C
∫ t

0

∫
S1

∣∣T − τh

∣∣ 2qh dξ ds + Ch2, (3.14)

where C depends on cp, cP, C1, C2, T , K2(X) and f . For the details, we refer to Jiang et al. (2023).

Combining (3.13) and (3.14), employing Gronwall’s inequality, we derive∫ t

0

∫
S1

∣∣∂tX − ∂txh

∣∣ 2qh dξ ds + sup
0≤s≤t

∫
S1

∣∣T − τh

∣∣ 2qh dξ ≤ Ch2, ∀ t ∈ [0, T∗], (3.15)

which together with (3.14) yields

‖|∂ξ X| − qh‖2
L2 ≤ Ch2.

Applying Lemma 3, there exists h0 > 0, depending on cp, cP, C1, C2, T , K2(X) such that for any 0 <

h ≤ h0, we have

inf qh ≥ 3C1/4 and sup qh ≤ 3C2/2, t ∈ [0, T∗].

By standard ODE theory, we can uniquely extend the above semidiscrete solution in a neighborhood of
T∗, and thus T∗ = T . The estimate (3.9) can be concluded similarly as in (Jiang et al., 2023, Theorem
2.5) by integration, (3.12) and (3.15):

‖X(·, t) − xh(·, t)‖2
H1 =

∫
S1

|X − xh|2 dξ +
∫
S1

|∂ξ X − ∂ξ xh|2 dξ

≤ 2
∫
S1

(∫ t

0
∂tX − ∂txh ds

)2

dξ + 2‖X0 − IhX0‖2
L2 + ‖|∂ξ X| − qh‖2

L2 +
∫
S1

|T − τh|2|∂ξ X|qh dξ

≤ 2
∫
S1

T
∫ t

0
|∂tX − ∂txh|2 ds dξ + Ch2 ≤ Ch2,

and the proof is completed. �
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18 W. JIANG ET AL.

3.2 FEM with tangential motions

The aforementioned methods are developed based on the equation (1.1) and only normal motion is
allowed. They might suffer from the fact that the mesh will have inhomogeneous properties during
the evolution, for instance, some nodes may cluster and the mesh may become distorted. This will
lead to instability and even the breakdown of the simulation. To address this challenge, various
techniques have been proposed to improve the mesh quality for evolving various types of geometric
flows in the literature, such as mesh redistribution (Bänsch et al., 2005), and the introduction of
artificial tangential velocity (Ševčovič & Mikula, 2001; Mikula & Ševčovič, 2004a; Barrett et al., 2020;
Duan & Li, 2024).

In this part, to achieve equipartition property for long-time evolution, we derive another formulation
of (1.1) by introducing a tangential velocity. We consider the equation

∂tX = (κ − f (L))N + γ (X)T,

where N, T are the unit normal vector and tangent vector, respectively, and γ is the tangential velocity
to be determined. It is important to note that the presence of tangential velocity has no impact on
the shape of evolving curves (Deckelnick & Dziuk, 1995; Elliott & Fritz, 2017), and suitable choices
of tangential velocity may help the redistribution of mesh points (Ševčovič & Mikula, 2001; Mikula
& Ševčovič, 2004a,b; Kolár et al., 2015). As mentioned in the introduction, inspired by the work of
Deckelnick & Dziuk (1995); Elliott & Fritz (2017) for CSF, we consider an explicit tangential velocity
given by

γ (X) = ∂ξ X · ∂ξξ X

|∂ξ X|3 .

More generally, for a fixed parameter 0 < α ≤ 1, we consider a series of reparametrizations Xα which
are determined by

α∂tXα + (1 − α)(∂tXα · N)N = ∂ξξ Xα

|∂ξ Xα|2 − f (L)N; Xα(ξ , 0) = X0(ξ). (3.16)

Below we provide three justifications for (3.16).

(i) The solution Xα of the evolution equation (3.16) has the same shape as the standard parametriza-
tion equation (1.2) since they share the same normal velocity

∂tXα · N = α∂tXα · N + (1 − α)∂tXα · N =
(

∂ξξ Xα

|∂ξ Xα|2 − γ (Xα)T − f (L)N

)
· N

=
(

1

|∂ξ Xα|∂ξ

(
∂ξ Xα

|∂ξ Xα|

)
− f (L)N

)
· N = κ − f (L),

where we note that the curvature κ and perimeter L are geometric quantities independent of the
parametrization.
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CONVERGENCE OF NONLOCAL FLOWS 19

(ii) The evolution of (3.16) has asymptotic equidistribution property in a continuous level. More
precisely, suppose Xe

α is the equilibrium of (3.16), i.e., ∂tX
e
α = 0, then formally we have

∂ξ |∂ξ Xe
α| = ∂ξξ Xe

α · T =
(

∂ξξ Xe
α

|∂ξ Xe
α|2 − f (L)N

)
· |∂ξ Xe

α|2T = 0,

which means the equilibrium has constant arc-length. This leads us to expect that the correspond-
ing numerical solution for (3.16) has equidistributed mesh points for long-time evolution.

(iii) As explained in Elliott & Fritz (2017, Section 8), we can write the standard parametrization
equation (1.2) as

∂tX = ΔΓ [X]X − f (L)N,

where Γ [X] is the image of X and ΔΓ [X] is the Laplace–Beltrami operator over the curve Γ [X].
The DeTurck’s trick for operator ΔΓ [X] maintains the normal term f (L)N unaffected and leads
to (3.16). In this aspect, the nonlocal flows can be viewed as a natural generalization of Elliott &
Fritz (2017, Section 8).

Next we present an FEM for (3.16). For fixed α, multiplying |∂ξ X|2 for both sides of (3.16) (below we
omit the subscript α for simplicity), we obtain the following weak formulation: for any v ∈ (H1(S1))2,
it holds∫

S1
|∂ξ X|2(α∂tX + (1 − α)(∂tX · N)N) · v dξ +

∫
S1

∂ξ X · ∂ξ v dξ +
∫
S1

f (L)|∂ξ X|2N · v dξ = 0.

(3.17)

We use the same spatial discretization for S1 as in the last subsection and assume it satisfies Assump-
tion 3.1. We further assume the exact solution of (3.16) is regular in the following sense.

ASSUMPTION 3.3. Suppose that the solution of (3.16) with an initial value X0 ∈ H2(S1) satisfies X ∈
W1,∞ (

[0, T], H2(S1)
)
, i.e.,

K2(X) := ‖X‖W1,∞([0,T],H2(S1)) < ∞,

and there exist constants 0 < C1 < C2 such that (2.2) holds.

DEFINITION 3. We call a function xh(ξ , t) =
N∑

j=1
xj(t)ϕj(ξ) : S1 × [0, T] → R

2 is a semidiscrete solution

of (3.16) if it satisfies xh(ξ , 0) = IhX0 and∫
S1

|∂ξ xh|2(α∂txh + (1 − α)(∂txh · nh)nh) · vh dξ +
∫
S1

∂ξ xh · ∂ξ vh dξ +
∫
S1

f (lh)|∂ξ xh|2nh · vh dξ = 0,

(3.18)

for any vh ∈ Vh, where nh = τ⊥
h represents the piecewise unit normal vector.
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20 W. JIANG ET AL.

THEOREM 3. Let X(ξ , t) be a solution of (3.16) satisfying Assumption 3.3. Assume that the partition of
S

1 satisfies Assumption 3.1. Then there exists h0 > 0 such that for all 0 < h ≤ h0, there exists a unique
semidiscrete solution xh for (3.18). Furthermore, the solution satisfies

sup
t∈[0,T]

|X − xh|2
H1 + α

∫ T

0
‖∂tX − ∂txh‖2

L2 dt + (1 − α)

∫ T

0
‖nh · (∂tX − ∂txh)‖2

L2 dt ≤ CTh2 + CeMT/αh2,

where h0, C and M depend on cp, cP, C1, C2, K2(X), and f .

We adapt the fixed-point argument (Deckelnick & Dziuk, 1995; Elliott & Fritz, 2017) and outline
the key steps below.

Outline of proof. Fix α ∈ (0, 1]. Consider the Banach space Zh = C([0, T], Vh) and a nonempty closed
convex subset Bh (see the definition (3.19)) of Zh. Define a continuous map F : Bh → Zh by F(uh) = yh,
where yh is the solution of (3.22).

(1) The assumed estimate for Bh allows us to derive the length estimate for uh ∈ Bh:

‖(|∂ξ X| − |∂ξ uh|)(t)‖L2 ≤ KheMt/(2α).

(2) For any yh ∈ Zh, combining with Step (1), we can obtain the following stability estimate
(cf. (3.27)):

max
t∈[0,T]

‖∂ξ X − ∂ξ yh‖2
L2 + α

∫ T

0
‖∂tX − ∂tyh‖2

L2 dt + (1 − α)

∫ T

0
‖n̂h · (∂tX − ∂tyh)‖2

L2 dt

≤ CTh2 + CeMT/αh2.

Finally, we use the above estimate to show that F(Bh) ⊂ Bh and apply Schauder’s fixed-point theorem
to obtain a fixed point xh, which is the desired solution and satisfies the corresponding estimate. �

Proof of Theorem 3. Fix α ∈ (0, 1]. We consider a Banach space Zh = C([0, T], Vh) equipped with the
norm

‖vh‖Zh
:= sup

t∈[0,T]
‖vh(t)‖L2 , vh ∈ Zh,

and a nonempty closed convex subset Bh of Zh defined by

Bh :=
{

vh ∈ Zh| sup
t∈[0,T]

e−Mt/α‖(∂ξ X − ∂ξ vh)(t)‖2
L2 ≤ K2h2 and vh(·, 0) = IhX0(·)

}
, (3.19)

where M, K > 0 are constants that will be determined later. For any uh ∈ Bh, applying interpolation
error, inverse inequality and (3.19), one can easily derive

‖(∂ξ X − ∂ξ uh)(t)‖L∞ ≤ ‖(∂ξ X − Ih∂ξ X)(t)‖L∞ + ‖(Ih∂ξ X − ∂ξ Ihuh)(t)‖L∞

≤ Ch1/2 + Ch−1/2‖(Ih∂ξ X − ∂ξ uh)(t)‖L2

≤ Ch1/2 + Ch−1/2 (‖(∂ξ X − Ih∂ξ X)(t)‖L2 + ‖(∂ξ X − ∂ξ uh)(t)‖L2
)

≤ Ch1/2
(

1 + e
Mt
2α K

)
.
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CONVERGENCE OF NONLOCAL FLOWS 21

It follows from Assumption 3.3 that there exists a constant h0 > 0, depending on α, M, K, T , K2(X) such
that for any 0 < h ≤ h0, we have

inf
ξ

|∂ξ uh| ≥ C1/2, sup
ξ

|∂ξ uh| ≤ 2C2. (3.20)

Setting q̂h = |∂ξ uh| and denoting l̂h as the perimeter of uh, due to the Lipschitz property of f , it holds
that

2πC1 ≤ L ≤ 2πC2, πC1 ≤ l̂h ≤ 4πC2, |f (l̂h)| ≤ C, (3.21)

where C is a constant, depending on C1, C2 and f . We define a continuous map F : Bh → Zh as follows.
For any uh ∈ Bh, we define yh as the unique solution which satisfies∫

S1
q̂h

2(α∂tyh + (1 − α)(∂tyh · n̂h)n̂h) · vh dξ +
∫
S1

∂ξ yh · ∂ξ vh dξ +
∫
S1

f (l̂h)q̂h(∂ξ yh)
⊥ · vh dξ = 0,

(3.22)

for all vh ∈ Vh, with initial data yh(0) = IhX0, where n̂h =
(

∂ξ uh
|∂ξ uh|

)⊥
.

(1) Length difference estimate for uh ∈ Bh. Applying (3.19) and the triangle inequality, we obtain

‖(|∂ξ X| − q̂h)(t)‖L2 ≤ ‖(∂ξ X − ∂ξ uh)(t)‖L2 ≤ KheMt/(2α), 0 ≤ t ≤ T . (3.23)

(2) Stability estimate for yh ∈ Zh. Taking v = vh in (3.17) and subtracting (3.22) from (3.17), we get∫
S1

q̂h
2 (α (

∂tX − ∂tyh

) · vh + (1−α)
(
∂tX − ∂tyh

) · n̂h(n̂h · vh)
)

dξ +
∫
S1

(
∂ξ X − ∂ξ yh

)
·∂ξ vh dξ

=
∫
S1

(q̂h
2 − |∂ξ X|2)(α∂tX · vh + (1 − α)(∂tX · n̂h)(n̂h · vh)) dξ

+ (1 − α)

∫
S1

|∂ξ X|2(∂tX · (n̂h − N)(n̂h · vh) + (∂tX · N)(n̂h − N) · vh) dξ

+
∫
S1

(
−f (L)|∂ξ X| + f (l̂h)q̂h

)
(∂ξ X)⊥ · vh dξ

−
∫
S1

f (l̂h)q̂h

(
(∂ξ X)⊥ − (∂ξ yh)

⊥) · vh dξ =: J1 + J2 + J3 + J4.

Choosing vh = Ih(∂tX) − ∂tyh ∈ Vh, the estimates of the left-hand side and J1, J2 can be found in
Elliott & Fritz (2017, (3.7)), which can be summarized as

d

dt
‖∂ξ X − ∂ξ yh‖2

L2 + C2
1

8
α‖∂tX − ∂tyh‖2

L2 + C2
1

4
(1 − α)‖n̂h · (∂tX − ∂tyh)‖2

L2

≤ Ch2(1 + ‖∂tX‖2
H2) + ‖∂ξ X − ∂ξ yh‖2

L2 + Ch2K2eMt/α/α + 2|J3| + 2|J4|. (3.24)
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22 W. JIANG ET AL.

For the terms of J3 and J4, in view of the Lipschitz property of f and the inequality

|L − l̂h| ≤ C‖|∂ξ X| − q̂h‖L2 ,

applying (3.20), (3.21), (3.23) and Young’s inequality, we get

|J3| =
∣∣∣∣ ∫

S1

(−f (L) + f (l̂h)
) |∂ξ X|(∂ξ X)⊥ · vh dξ −

∫
S1

f (l̂h)
(
|∂ξ X| − q̂h

)
(∂ξ X)⊥ · vh dξ

∣∣∣∣
≤ C

∫
S1

|L − l̂h|
(|Ih(∂tX) − ∂tX| + |∂tX − ∂tyh|

)
dξ

+ C
∫
S1

||∂ξ X| − q̂h|
(|Ih(∂tX) − ∂tX| + |∂tX − ∂tyh|

)
dξ

≤ Ch|L − l̂h|‖∂tX‖H1 + C|L − l̂h|‖∂tX − ∂tyh‖L2

+ Ch‖|∂ξ X| − q̂h‖L2‖∂tX‖H1 + C‖|∂ξ X| − q̂h‖L2‖∂tX − ∂tyh‖L2

≤ CKe
Mt
2α h‖∂tX − ∂tyh‖L2 + CKe

Mt
2α h2‖∂tX‖H1

≤ C(ε)eMt/αK2h2

4α
+ εα‖∂tX − ∂tyh‖2

L2 + αh2‖∂tX‖2
H1 ,

and

|J4| =
∣∣∣∣ ∫

S1
f (l̂h)q̂h

(
(∂ξ X)⊥ − (∂ξ yh)

⊥) · vh dξ

∣∣∣∣
≤ Ch‖∂ξ X − ∂ξ yh‖L2‖∂tX‖H1 + C‖∂ξ X − ∂ξ yh‖L2‖∂tX − ∂tyh‖L2

≤ ‖∂ξ X − ∂ξ yh‖2
L2 + Ch2‖∂tX‖2

H1 + C(ε)

4α
‖∂ξ X − ∂ξ yh‖2

L2 + εα‖∂tX − ∂tyh‖2
L2 .

Combining all the above estimate and taking ε small enough, we obtain

d

dt
‖∂ξ X − ∂ξ yh‖2

L2 + C2
1

16
α‖∂tX − ∂tyh‖2

L2 + C2
1

4
(1 − α)‖n̂h · (∂tX − ∂tyh)‖2

L2

≤ Ch2 + C(1 + 1/α)‖∂ξ X − ∂ξ yh‖2
L2 + Ch2K2eMt/α/α, (3.25)

where C depends on cp, cP, C1, C2, T , K2(X) and f . This directly gives

d

dt
‖∂ξ X − ∂ξ yh‖2

L2 ≤ Ch2 + C(1 + 1/α)‖∂ξ X − ∂ξ yh‖2
L2 + Ch2K2eMt/α/α.
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CONVERGENCE OF NONLOCAL FLOWS 23

Thus, we get

‖∂ξ X(t) − ∂ξ yh(t)‖2
L2 ≤ ‖∂ξ X0 − ∂ξ yh(0)‖2

L2eC(1+ 1
α
)t + Ch2

∫ t

0
eC(1+ 1

α
)(t−s)

(
1 + K2eMs/α/α

)
ds

≤ CeC(1+ 1
α
)th2 + CK2h2 e

M
α

t − eC(1+ 1
α
)t

M − C(1 + α)
,

which yields

e−Mt/α‖∂ξ X − ∂ξ yh‖2
L2 ≤ Ch2e(− M

α
+ C

α
+C)t + CK2h2

M − C(1 + α)
≤ K2h2, (3.26)

if we select M ≥ 3C + Cα and K2 ≥ 2C.

Hence, by plugging (3.26) into (3.25), integrating from 0 to T , we arrive at

max
t∈[0,T]

‖∂ξ X − ∂ξ yh‖2
L2 + α

∫ T

0
‖∂tX − ∂tyh‖2

L2 dt + (1 − α)

∫ T

0
‖n̂h · (∂tX − ∂tyh)‖2

L2 dt

≤ C(1 + T)h2 + CK2h2(1 + 1/α)

∫ T

0
eMs/α ds

≤ C(1 + T)h2 + K2h2(eMT/α − 1) ≤ CTh2 + CeMT/αh2, (3.27)

where C and M are constants, depending on cp, cP, K2(X),C1, C2 and f .

Now we complete the proof by applying Schauder’s fixed point theorem for F. Indeed, it follows from
assumption (3.19) and (3.26) that F(Bh) ⊂ Bh. Furthermore, it can be easily derived from (3.27) and
the assumption yh(0) = IhX0 that ‖yh‖W1,2([0,T],Vh)

≤ C, which, together with the Sobolev embedding,
implies that the inclusion F(Bh) ⊂ Bh is compact. Thus, by Schauder’s fixed point theorem (c.f. (Elliott
& Fritz, 2017, Theorem 3.1)), there exists a fixed point xh for (3.22) that satisfies F(xh) = xh, which is
the desired semidiscrete solution. Moreover, the estimate (3.27) also holds for the solution xh.

To address the uniqueness, it is important to recognize that (3.18) constitutes a nonlinear ODE system
for xj. Consequently, the uniqueness of xh is assured by nonlinear ODE theory. It’s evident that xh serves
as a semidiscrete solution of (3.18), and thus aligns with the corresponding estimate. �

4. Convergence under manifold distance

As discussed in Zhao et al. (2021); Jiang et al. (2024a), for two closed simple curves Γ1 and Γ2, the
manifold distance is defined as

M
(
Γ1, Γ2

)
:= Area((Ω1 \ Ω2) ∪ (Ω2 \ Ω1)) = Area(Ω1) + Area(Ω2) − 2Area(Ω1 ∩ Ω2),

where Ω1 and Ω2 are the regions enclosed by Γ1 and Γ2, respectively. As proved in Zhao et al. (2021,
Proposition 5.1), the manifold distance satisfies symmetry, positivity and the triangle inequality. Under
some assumptions, e.g., if Γ2 lies within the tabular neighborhood of the C2 curve Γ1 (Deckelnick et al.,
2005), the manifold distance between the two curves can be interpreted as the L1-norm of the distance
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24 W. JIANG ET AL.

function. Recently, compared to the Lp-norm of parametrization functions, this type of distance (i.e.
the Lp-norm of distance function) has gained wide attention in both the scientific computing (Jiang
et al., 2024a,b) and numerical analysis communities (Bai & Li, 2023). Moreover, the authors’ works
(Zhao et al., 2021; Jiang et al., 2024a,b) have demonstrated that the manifold distance (one of the shape
metrics) is more suitable than the norm of parametrization functions for quantifying numerical errors of
the schemes which are used for solving geometric flows, especially for schemes which allow intrinsic
tangential velocity. Meanwhile, Bai and Li (Bai & Li, 2023) have recently observed that the L2-norm
of distance function (so-called the projected distance in their paper) leads to the recovery of full H1

parabolicity, and established a convergence result for Dziuk’s scheme of the mean curvature flow with
finite elements of degree k ≥ 3.

In this subsection, we first show that the function L∞-norm is stronger than the manifold distance
under some suitable regularity assumptions. More specifically, for a parametrization function X ∈ C2(S1)

of curve ΓX and an approximation curve ΓY by parameterization function Y ∈ C0(S1), we have the
following lemma.

LEMMA 4. Let X : S1 → R
2 be a parametrization function of simple curves ΓX with X ∈ C2(S1). Assume

there exist constants 0 < C1 < C2 such that it holds

C1 ≤
∣∣∣∂ξ X(ξ)

∣∣∣ ≤ C2, ∀ ξ ∈ S
1.

Then there exist positive constants δ0 and C such that for any parametrization function Y ∈ C0(S1)

satisfying

‖X − Y‖L∞ ≤ δ0,

the following inequality is true:

M(ΓX , ΓY) ≤ C‖X − Y‖L∞ ,

where ΓX and ΓY are the images of X and Y , respectively. The constants δ0 and C depend on X, C1
and C2.

Proof. The closed simple C2 curve ΓX in R
2 naturally admits a tabular neighborhood Ωδ in the following

manner (Deckelnick et al., 2005; Bänsch et al., 2023): there exists a constant δ > 0 such that the mapping

EX : ΓX × (−δ, δ) → R
2, EX(a, η) = a + ηN,

acts as a diffeomorphism from ΓX × (−δ, δ) to the image denoted by Im(EX) =: Ωδ . Here N represents
the normal vector along ΓX . Consequently, the points within the tabular neighborhood Ωδ can be
represented as

E−1
X : Ωδ → ΓX × (−δ, δ), E−1

X (b) = (πΓX
(b), dΓX

(b)),

where πΓX
(b) ∈ ΓX is the projection of b onto ΓX , and dΓX

(b) = d(b, ΓX) represents the signed distance.
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FIG. 1. Illustration of (a) the definition of ΓX , ΓY , Γ int
δw

and Γ ext
δw

, (b) the comparison of the projection distance δw and the function

L∞-norm ‖X − Y‖L∞ .

Set δ0 < δ. For any parametrization function Y ∈ C0(S1) which satisfies ‖X − Y‖L∞ ≤ δ0, it is
evident that ΓY ⊆ Ωδ . Now define

δw := sup
b∈ΓY

|dΓX
(b)|

which represents the maximum distance between ΓY and ΓX . Clearly, we can assume δw > 0, as there is
nothing to prove otherwise. Define two curves Γ int

δw
and Γ ext

δw
, within the tabular neighborhood Ωδ , which

are parametrized as

S
1 � ξ → (xint(ξ), yint(ξ)) = (x(ξ), y(ξ)) + δwN(x(ξ), y(ξ)),

S
1 � ξ → (xext(ξ), yext(ξ)) = (x(ξ), y(ξ)) − δwN(x(ξ), y(ξ)), (4.1)

respectively. Here X(ξ) = (x(ξ), y(ξ)) is a parametrization of the curve ΓX , and N is the unit inner
normal vector. Denote Ωδw

as the region enclosed by Γ int
δw

and Γ ext
δw

(cf. Fig. 1(a)). By utilizing the
regularity assumption of X along with (2.2) and (4.1), we can estimate the area of Ωδw

as follows:

Area(Ωδw
) =

∫
S1

∂ξ xext yext dξ −
∫
S1

∂ξ xint yint dξ

≤ C
∫
S1

|∂ξ xext − ∂ξ xint| + |yext − yint| dξ

≤ Cδw

∫
S1

|∂ξN | + |N | dξ ≤ Cδw,

where C is a constant, depending on X, C1 and C2. The triangle inequality for manifold distance yields

M(ΓX , ΓY) ≤ M(ΓX , Γ int
δw

) + M(Γ int
δw

, ΓY) ≤ 2Area(Ωδw
) ≤ Cδw ≤ C‖X − Y‖L∞ ,

where we use the natural control δw ≤ ‖X − Y‖L∞ (cf. Fig. 1(b)) and the proof is completed. �
As natural corollaries, we have the following convergence results of numerical schemes under the

manifold distance.
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26 W. JIANG ET AL.

COROLLARY 1.

(1) Let X(ξ , t) be the solution of (1.2) that satisfies Assumption 2.1 and belongs to W3,2(S1). Let xh(t)
be the unique finite difference semidiscrete solution of (2.6), then it holds

sup
t∈[0,T]

M(ΓX , Γxh
) ≤ Ch2.

(2) Let X(ξ , t) be the solution of (1.2) that satisfies Assumption 3.2 and belongs to W3,2(S1). Assume
that the partition of S

1 satisfies Assumption 3.1, and let xh(t) be the unique finite element
semidiscrete solution of (3.3). Then, it holds

sup
t∈[0,T]

M(ΓX , Γxh
) ≤ Ch.

(3) Let X(ξ , t) be the solution of (3.16) that satisfies Assumption 3.3 and belong to W3,2(S1). Assume
that the partition of S1 satisfies Assumption 3.1 and xh(t) is the unique finite element semidiscrete
solution of (3.18), then

sup
t∈[0,T]

M(ΓX , Γxh
) ≤ Ch.

In all estimates, ΓX and Γxh
represent the images of X and xh, respectively. The constant C depends

on C1, C2, T , f and additionally, K1(X) for (1), and K2(X) for (2) and (3).

Proof. For the first conclusion, combining the Sobolev embedding, triangle inequality, interpolation
error, Lemma 5 with the main error estimate (2.7), one obtains

‖X − xh‖L∞ ≤ C‖X − xh‖H1 ≤ C‖X − IhX‖H1 + C‖IhX − xh‖H1

≤ Ch2‖X‖W3,2 + C‖IhX − xh‖H1
G

√
1 + h2/6 ≤ Ch2,

where for the third inequality we have utilized Lemma 5 for the grid function IhX−xh. Hence, by applying
Lemma 4 with δ0 = Ch2, Y = xh and for different time t ∈ [0, T], we conclude the first assertion (1).
The latter two statements can be similarly confirmed by referring to Theorems 2 and 3, along with the
Sobolev embedding

sup
t∈[0,T]

‖X − xh‖L∞ ≤ C sup
t∈[0,T]

‖X − xh‖H1 ≤ Ch,

and the proof is completed. �

LEMMA 5. Let g : Gh → R be a grid function. Then it holds

‖g‖2
H1 ≤ ‖g‖2

H1
G

(
1 + h2/6

)
,

where the grid function g is identified with the piecewise linear function over S1 that connects the grid
values of g.
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Proof. Denote Mj = max
ξ∈(ξj,ξj+1)

(|g|2)′′ and by applying the trapezoidal rule, we have

‖g‖2
H1 =

N∑
j=1

∫ ξj+1

ξj

|g|2 + |∂ξ g|2 dξ

≤
N∑

j=1

( |g(ξj)|2 + |g(ξj+1)|2
2

h + h3

12
Mj

)
+ h

N∑
j=1

|δgj+1|2

= h
N∑

j=1

(|gj|2 + |δgj|2
) + h3

12

N∑
j=1

Mj.

Noticing g is a piecewise linear function, we have

Mj = max
ξ∈(ξj,ξj+1)

(
|g|2

)′′ = 2 max
ξ∈(ξj,ξj+1)

|g′|2 = 2|δgj+1|2,

which yields

‖g‖2
H1 ≤ h

N∑
j=1

(|gj|2 + |δgj|2
) + h3

6

N∑
j=1

|δgj+1|2 ≤ ‖g‖2
H1

G

(
1 + 1

6
h2
)

,

and the proof is completed. �

5. Numerical results

In this section, we present numerous numerical experiments for the proposed three different schemes
applied to various geometric flows involving the nonlocal term f (L). We first provide full discretizations
for the three schemes using backward Euler time discretization. Specifically, we choose an integer m,
set the time step τ = T/m and tk = kτ for k = 0, . . . , m. Given a fixed mesh size h and a time step
τ = O(h2), we consider the following three cases.

(i) For the finite difference method (2.6), given x0
h = IhX0, for k ≥ 1, we consider the solution xk

h ∈ Gh
of the following equation (denoted as FDM)

xk
j − xk−1

j

τ
= 2

qk−1
j + qk−1

j+1

(
xk

j+1 − xk
j

qk−1
j+1

− xk
j − xk

j−1

qk−1
j

)
− f (lk−1

h )
nk−1

j + nk−1
j+1

|nk−1
j + nk−1

j+1 | , (5.1)

where xk
j represents the grid value, lkh is the perimeter of the polygon with vertices {xk

j }j, and nk
j =

(τ k
j )⊥ is the discrete normal vector.
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28 W. JIANG ET AL.

(ii) For the finite element method (3.3), given x0
h = IhX0, for k ≥ 1, we consider the solution xk

h =
N∑

j=1
xk

j ϕj ∈ Vh which satisfies (denoted as FEM)

∫
S1

∣∣∣∂ξ xk−1
h

∣∣∣ δτ xk
h · vh dξ +

∫
S1

∂ξ xk
h · ∂ξ vh/

∣∣∣∂ξ xk−1
h

∣∣∣ dξ

+
∫
S1

h2|∂ξ xk−1
h |∂ξ δτ xk

h · ∂ξ vh/6 dξ +
∫
S1

f
(

lk−1
h

)(
∂ξ xk

h

)⊥ · vh dξ = 0, ∀ vh ∈ Vh,

where δτ is the backward finite difference δτ xk
h = (xk

h −xk−1
h )/τ , and lk−1

h is the length of the image
of xk−1

h . Or it can be written equivalently as a discretization for the ODE system (3.5):

qk−1
j + qk−1

j+1

2τ

(
xk

j − xk−1
j

)
− xk

j+1 − xk
j

qk−1
j+1

+ xk
j − xk

j−1

qk−1
j

+
f
(

lk−1
h

)
2

(
xk

j+1 − xk
j−1

)⊥ = 0. (5.2)

(iii) For the finite element method with tangent motions (3.18), given x0
h = IhX0, for fixed α ∈ (0, 1]

and k ≥ 1, xk
h =

N∑
j=1

xk
j ϕj ∈ Vh is the solution of the following (denoted as FEM-TM)

∫
S1

Ih

[
(αδτ xk

h + (1 − α)(δτ xk
h · nk−1

h )nk−1
h ) · vh

] ∣∣∣∂ξ xk−1
h

∣∣∣2 dξ +
∫
S1

∂ξ xk
h · ∂ξ vh dξ

+
∫
S1

Ih

[
f (lk−1

h )nk−1
h · vh

] ∣∣∣∂ξ xk−1
h

∣∣∣2 dξ = 0, ∀ vh ∈ Vh, (5.3)

where nk−1
h =

(
∂ξ xk−1

h

|∂ξ xk−1
h |

)⊥
is the unit normal vector. Through a straightforward computation, we

find it can be written equivalently as

α
xk

j − xk−1
j

τ
+ (1 − α)

(xk
j − xk−1

j

τ
· nk−1

j

)
nk−1

j = 2(xk
j+1 − 2xk

j + xk
j−1)(

qk−1
j

)2 +
(

qk−1
j+1

)2
− f

(
lk−1
h

)
nk−1

j , (5.4)

where nk−1
j =

(
xk−1

j −xk−1
j−1

qk−1
j

)⊥
.

REMARK 2. The convergence analysis of the fully discrete schemes, including FEM (5.1), FEM (5.2)
and FEM-TM (5.4), requires considerable investigation. It is noteworthy that the FDM and FEM
schemes are natural extensions of Dziuk’s fully discrete linearly implicit scheme for CSF (Dziuk, 1994),
incorporating an additional nonlocal forcing term. Recent advancements in error estimates for Dziuk-
type schemes include: (i) Ye & Cui (2021), who employed an unconditional length shortening property
(qk

j ≤ qk−1
j for any τ > 0) and matrix analysis techniques to establish an optimal error estimate in the H1-

norm for Dziuk’s lumped mass scheme; (ii) Li (2020), who identified a monotone structure and examined
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CONVERGENCE OF NONLOCAL FLOWS 29

convergence results for Dziuk’s original scheme with higher-order finite elements (k ≥ 3); and (iii) Bai
& Li (2023), who introduced a new framework to prove the convergence of Dziuk’s original scheme with
higher-order finite elements (k ≥ 3) under the projected distance. However, extending these approaches
to the nonlocal case is challenging due to the loss of unconditional length shortening property and the
failure of monotone structure in our formulation. Moreover, extending the framework proposed by Bai
and Li is significantly more complex. The difficulty with Dziuk-type schemes stems from their lack of
parabolicity (cf. Li (2020); Ye & Cui (2021)). Incorporating tangential velocity enhances parabolicity
and simplifies numerical analysis (Deckelnick & Dziuk, 1995; Barrett et al., 2017; Elliott & Fritz,
2017). Utilizing techniques from the work of Barrett, Deckelnick, and Styles (Barrett et al., 2017), we
can establish a convergence result for the FEM-TM scheme (5.3). Detailed proofs can be found in the
appendix for the readers’ convenience.

5.1 Accuracy test

To evaluate the convergence order of the proposed three schemes, we primarily consider the following
cases of geometric flows with different initial curves:

Case 1: An ellipse initial curve, parameterized by (2 cos θ , sin θ)T , θ ∈ [0, 2π ], with the correspond-
ing flow being the AP-CSF with f (L) = 2π/L;

Case 2: A four-leaf rose initial curve, parameterized by (cos(2θ) cos θ , cos(2θ) sin θ)T , θ ∈ [0, 2π ],
with the corresponding flow being the AP-CSF for nonsimple curves with f (L) = 2π ind/L, ind(Γ ) = 3;

Case 3: An ellipse initial curve, with the corresponding flow being a curve flow with area decreasing
rate of π , i.e., f (L) = (2π − β)/L, β = π .

As the exact solutions of the above cases are unknown, we consider the following numerical errors
for the FDM (5.1):

L∞
t H1

G error
(
E1

)
h,τ (T) := max

1≤k≤T/τ

∥∥xk
h,τ − x̂4k

h/2,τ/4

∥∥
H1

G
,

Manifold distance
(
E2

)
h,τ (T) := M

(
Γ

T/τ
h,τ , Γ 4T/τ

h/2,τ/4

)
,

where we view x̂4k
h/2,τ/4 as a grid function over Gh with grid values {x4k

2j }N
j=1, and the L∞

G norm is defined as

‖g‖L∞
G

:= max
j=1,...,N

|gj|. Furthermore, the polygons Γ
T/τ

h,τ and Γ
4T/τ

h/2,τ/4 are the images of xT/τ
h,τ and x4T/τ

h/2,τ/4,

respectively.
Different types of errors for the FDM (5.1) are depicted Fig. 2, where we choose h = 2π/N, τ =

0.5h2. The numerical results indicate that, for each instance of nonlocal flows listed above, the solution
of (5.1) converges quadratically in L∞

t L2
G, L∞

t H1
G and L∞

t L∞
G , which agrees with the theoretical results

in Theorem 1. Moreover, we observe a quadratic convergence under the manifold distance, aligning with
the theoretical findings in Corollary 1 (1).

We now turn to the convergence order test of the FEM (5.2) and the FEM-TM (5.4). We similarly
consider the following numerical errors

L∞
t H1

x error
(
E3

)
h,τ (T) := max

1≤k≤T/τ

(∥∥xk
h,τ − x4k

h/2,τ/4

∥∥
L2(S1)

+ ∥∥∂ξ xk
h,τ − ∂ξ x4k

h/2,τ/4

∥∥
L2(S1)

)
,

Manifold distance
(
E4

)
h,τ (T) := M(Γ

T/τ
h,τ , Γ 4T/τ

h/2,τ/4),
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30 W. JIANG ET AL.

FIG. 2. Numerical errors under different norms for the FDM (5.1) at T = 1/4: (a) Case 1; (b) Case 2; (c) Case 3.

FIG. 3. Numerical errors under different norms of the FEM (5.2) at T = 1/4: (a) Case 1; (b) Case 2; (c) Case 3.

where xk
h,τ represents the solution obtained by the above fully discrete scheme (5.2) or (5.4) with mesh

size h and time step τ .
The numerical errors of the FEM (5.2) and the FEM-TM (5.4) are presented in Fig. 3 and Fig. 4,

respectively, from which we observe that, for each nonlocal flow with ind or β, the solutions of (5.2)
and (5.4) converge linearly in L∞

t H1
x , consistent with the theoretical results in Theorems 2 and 3.

Moreover, Fig. 4(a) and (b) illustrate that the scheme (5.4) performs equally well for different choices of
α. Additionally, we observe that the solution converges quadratically under the manifold distance, which
is superior to the theoretical results in Corollary 1 (2) and (3).

5.2 Evolution of geometric quantities

In this subsection, we utilize the proposed three methods: FDM (5.1), FEM (5.2) and FEM-TM
(5.4) to simulate the nonlocal geometric flows. We are mainly concerned with the evolution of the
following geometric quantities: perimeter L(t), relative area loss ΔA(t) and the mesh ratio function Ψ (t)
defined as

L(t)| t=tk = lkh, ΔA(t)| t=tk = Ak
h − A0

h

A0
h

, Ψ (t)| t=tk = maxj=1,...,N qk
j

minj=1,...,N qk
j

,
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CONVERGENCE OF NONLOCAL FLOWS 31

FIG. 4. Numerical errors under different norms of the FEM-TM (5.4) at T = 1/4: (a) Case 1 with α = 1; (b) Case 1 with α = 0.5;
(c) Case 2 with α = 1; (d) Case 3 with α = 1.

FIG. 5. Snapshots of the curve evolution using the FDM (first row), FEM (second row) and FEM-TM (third row) with α = 1 for
Case 1. The parameters are chosen as N = 80 and τ = 1/160.

where lkh and Ak
h are the perimeter and the area of the polygon determined by xk

h, respectively, and qk
j =

|xk
j −xk

j−1|. Note that for the area of an immersed curve, such as the four-leaf rose, it is treated as a signed
area. In morphological evolutions, we primarily focus on the following cases:

Case 1: A flower initial curve parametrized by

((2 + cos(6θ)) cos θ , (2 + cos(6θ)) sin θ)T , θ ∈ [0, 2π ],

with the corresponding flow being the AP-CSF with f (L) = 2π/L;
Case 2: A four-leaf rose initial curve, with the corresponding flow being the AP-CSF for a nonsimple

curve with f (L) = 2π ind/L, ind(Γ ) = 3;
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32 W. JIANG ET AL.

FIG. 6. Snapshots of the curve evolution using the FDM (first row), FEM (second row) and FEM-TM (third row) with α = 1 for
Case 2. The parameters are chosen as N = 80 and τ = 1/160.

Case 3: A 4 × 1 rectangular initial curve with the corresponding flow being a curve flow with area
decreasing rate of π , i.e., f (L) = (2π − β)/L, β = π .

Figures 5–8 depict the comparisons of the three schemes through the evolutions of the solution and
geometric quantities for the respective three cases. Based on the observations from Figs 5–8, we can
draw the following conclusions:

(i) All of the schemes can evolve the above three cases successfully into their equilibriums, i.e., circle
for Case 1, triple circle for Case 2 and a round point for Case 3, which agrees with the theoretical
results in Wang & Kong (2014) (cf. Figs 5, 6 and 7).

(ii) For Case 1 and Case 2, the area is conserved numerically up to some precision while the area is
decreasing numerically with the rate π for Case 3 (cf. Fig. 8(b)).

(iii) As demonstrated in Fig. 8(c), the FEM-TM redistributes the points during the evolution and
ultimately achieves the equidistribution property, i.e., Ψ (t) → 1 as t → +∞. This coincides
the motivation in Section 3.2. In contrast, the FDM and the FEM fail to preserve good mesh quality
during the evolution.

We close this section with a numerical example to demonstrate that the parameter α in the FEM-TM
(5.4) signifies the velocity of tangential motions. We conduct simulations for Case 1 using the FEM-TM
with varying values α = 0.1, 0.5 and 1. As depicted in Fig. 9(c), a smaller α leads to a more effective
redistribution of the mesh points. Figure 9(b) illustrates that as α approaches 0, the loss of area becomes
greater. This indicates that for a fixed set of computational parameters N and τ , a smaller value of α
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CONVERGENCE OF NONLOCAL FLOWS 33

FIG. 7. Snapshots of the curve evolution using the FDM (first row), FEM (second row) and FEM-TM (third row) with α = 1 for
Case 3. The parameters are chosen as N = 80 and τ = 1/160.

FIG. 8. Evolution of the geometric quantities using the FDM, FEM and FEM-TM with α = 1 for Cases 1–3 is illustrated in the
first through third rows, respectively. (a) Perimeter L(t); (b) Relative area loss ΔA(t); (c) Mesh ratio function Ψ (t). The parameters
are chosen as N = 640 and τ = 1/1280.
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34 W. JIANG ET AL.

FIG. 9. Evolution of geometric quantities using the FEM-TM with different α = 0.1, 0.5, 1 for Case 1. (a) Perimeter L(t);
(b) Relative area loss ΔA(t); (c) Mesh ratio function Ψ (t). The parameters are chosen as N = 80 and τ = 1/160.

yields a less accurate simulation, aligning with the findings in Theorem 3, wherein the exponential of 1
α

is involved in the error estimate.

6. Conclusions

We developed three distinct semidiscrete schemes for simulating some nonlocal geometric flows
involving perimeter and the corresponding error estimates were established. Specifically, the FDM
exhibits quadratic convergence in H1, whereas the FEM and the FEM-TM are convergent at the first
order in H1. Furthermore, all three methods demonstrate robust quadratic convergence under manifold
distance. Extensive numerical experiments have underscored the superior mesh quality of the FEM-TM
compared to FDM and FEM.

It is noteworthy that our proof of the error estimate under manifold distance is not optimal for FEM-
TM and FEM. Exploring the possibility of providing a proof of optimal convergence for piecewise linear
finite element would be a valuable endeavor.
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A. Appendix

In this appendix, we present a convergence result for the fully discrete FEM-TM scheme (5.3). We adapt
the approach from Barrett et al. (2017) to couple curve evolution with reaction-diffusion. We first need
the following assumption for the solution X:

ASSUMPTION A.1. Suppose that the solution of (3.16) with an initial value X0 ∈ H2(S1) satisfies X ∈
W1,∞ (

[0, T], H2(S1)
) ∩ H2

(
[0, T], H1(S1)

) ∩ L∞ (
[0, T], H3(S1)

)
, i.e.,

K3(X) := ‖X‖W1,∞([0,T],H2(S1)) + ‖X‖H2([0,T],H1(S1)) + ‖X‖L∞([0,T],H3(S1)) < ∞.

And there exist constants 0 < C1 < C2 such that (2.2) holds.

THEOREM A.1. Let X(ξ , t) be a solution to (3.16) satisfying Assumption A.1. Assume that the partition
of S1 meets Assumption 3.1. Then, there exists h0 > 0 such that for all 0 < h ≤ h0 and τ ≤ d0h, there
exists a unique solution for the FEM-TM scheme (5.3) and it satisfies the following error estimate

max
k=0,...,m

|X(tk) − xk
h|2H1 +

m∑
k=1

τ‖∂tX(tk) − δτ xk
h‖2

L2 ≤ Ch2 + C(1 + d2
0)e

d1CT h2, (A.1)

where h0, C are constants that depend on cp, cP, C1, C2, α, K3(X), and f , and d1 = C(1 + d2
0), CT =∫ T

0 (1 + ‖∂ttX(·, t)‖2
H1) dt.

Proof. Denote

ek
h := Xk − xk

h = Xk − IhXk + IhXk − xk
h = ρk

h + ηk
h,

where Xk = X(·, tk). We prove the following estimate by induction

|ηk
h|2H1 ≤ h2eθ

∫ tk
0 ζ(t) dt, h ∈ (0, h∗], (A.2)

where ζ(t) = 1 + ‖∂ttX(·, t)‖2
H1 , θ is a constant independent of h and τ , and will be chosen later, and h∗

is chosen small enough such that

0 <
C1

2
≤ |∂ξ xk−1

h | ≤ 2C2. (A.3)

The proof combines the induction (A.2) with an inverse inequality argument similar to Lemma 3 (see
also Barrett et al. (2017, (3.6), (3.7))). By evaluating (3.17) at time tk, taking v = vh in (3.17), and
subtracting (5.3) from (3.17), we get∫

S1
(α∂tX(tk) + (1 − α)(∂tX(tk) · N k)N k) · vh |∂ξ Xk|2

− Ih

[
(αδτ xk

h + (1 − α)(δτ xk
h · nk−1

h )nk−1
h ) · vh

]
|∂ξ xk−1

h |2 dξ +
∫
S1

(
∂ξ Xk − ∂ξ xk

h

)
· ∂ξ vh dξ

+
∫
S1

f (Lk)N k · vh|∂ξ Xk|2 − Ih

[
f (lk−1

h )nk−1
h · vh

]
|∂ξ xk−1

h |2 dξ = 0,
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where we denote N k = N (tk). Choosing vh = τδτ η
k
h, a straightforward computation yields

τ

∫
S1

Ih

[
(αδτ η

k
h + (1 − α)(δτ η

k
h · nk−1

h )nk−1
h ) · δτ η

k
h

]
|∂ξ xk−1

h |2 dξ + τ

∫
S1

∂ξη
k
h · ∂ξ δτ η

k
h dξ

= τ

∫
S1

Ih

[
(αδτ Xk + (1 − α)(δτ Xk · nk−1

h )nk−1
h ) · δτ η

k
h

]
|∂ξ xk−1

h |2

− τ
(
α∂tX(tk) + (1 − α)(∂tX(tk) · N k)N k

)
· δτ η

k
h |∂ξ Xk|2 dξ

+ τ

∫
S1

Ih

[
f (lk−1

h )nk−1
h · δτ η

k
h

]
|∂ξ xk−1

h |2 − f (Lk)N k · δτ η
k
h|∂ξ Xk|2 dξ − τ

∫
S1

∂ξρ
k
h · ∂ξ δτ η

k
h dξ

=: A1 + A2 + A3.

By applying the bound given in (A.3), we can estimate the left-hand side (LHS) as follows:

LHS ≥ τα
C2

1

4
‖δτ η

k
h‖2

L2 + τ(1 − α)
C2

1

4
‖δτ η

k
h · nk−1

h ‖2
L2 + 1

2

(
|ηk

h|2H1 + |ηk
h − ηk−1

h |2H1 − |ηk−1
h |2H1

)
.

(A.4)

The estimate of A1 can be found in Barrett et al. (2017, (3.13)–(3.16)), which reads as

|A1| ≤ ετ‖δτ η
k
h‖2

L2 + C(ε)

(
τ |ηk−1

h |2H1 + h2
∫ tk

tk−1

ζ(t) dt

)
+ C(ε)d2

0τh2. (A.5)

Moreover, the interpolation estimate and inverse estimate yield the bound of A3:

|A3| ≤ Cτ‖∂ξρ
k
h‖L2‖∂ξ δτ η

k
h‖L2 ≤ Cτh3/2‖Xk‖H3‖δτ η

k
h‖L2 ≤ C(ε)τh2 + ετ‖δτ η

k
h‖2

L2 . (A.6)

The estimate of A2 involves the nonlocal term and it is important to note that

A2 = τ

∫
S1

f (lk−1
h )

(
nk−1

h − N k
)

· δτ η
k
h |∂ξ xk−1

h |2 + f (lk−1
h )N k · δτ η

k
h

(
|∂ξ xk−1

h |2 − |∂ξ Xk|2
)

dξ

+ τ

∫
S1

(
f (lk−1

h ) − f (Lk)
)
N k · δτ η

k
h |∂ξ Xk|2 dξ

=: A21 + A22.

By recalling (A.3), using Barrett et al. (2017, (3.18), (3.20)), along with the Lipschitz property of f and
Young’s inequality, we are led to

|A21| ≤ Cτ
(

h + |ηk−1
h |H1

)
‖δτ η

k
h‖L2 ≤ C(ε)τh2 + C(ε)τ |ηk−1

h |2H1 + ετ‖δτ η
k
h‖2

L2 , (A.7)

|A22| ≤ Cτ |f (lk−1
h ) − f (Lk−1)|‖δτ η

k
h‖L2 + Cτ |f (Lk) − f (Lk−1)|‖δτ η

k
h‖L2

≤ Cτ‖∂ξ Xk−1 − ∂ξ xk−1
h ‖L2‖δτ η

k
h‖L2 + Cτ 2‖δτ η

k
h‖L2

≤ Cτ
(
|ηk−1

h |H1 + d0h
)

‖δτ η
k
h‖L2

≤ C(ε)d2
0τh2 + C(ε)τ |ηk−1

h |2H1 + ετ‖δτ η
k
h‖2

L2 , (A.8)
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where we used the assumption that τ ≤ d0h. Finally, by combining the above estimates (A.4)–(A.8),
choosing ε sufficiently small and θ = C(1 + d2

0) =: d1, and applying the induction hypothesis together
with the fact that ζ ≥ 1, we get

τ
C2

1

4

∥∥∥δτ η
k
h

∥∥∥2

L2
+ τ

C2
1

4
‖δτ η

k
h · nk−1

h ‖2
L2 + |ηk

h|2H1 + |ηk
h − ηk−1

h |2H1

≤ |ηk−1
h |2H1 + Cτ |ηk−1

h |2H1 + Cd2
0h2

∫ tk

tk−1

ζ(t) dt

≤ h2eθ
∫ tk−1

0 ζ(t) dt
(

1 + C(1 + d2
0)

∫ tk

tk−1

ζ(t) dt

)

= h2eθ
∫ tk−1

0 ζ(t) dt
(

1 + θ

∫ tk

tk−1

ζ(t) dt

)
≤ h2eθ

∫ tk−1
0 ζ(t) dt eθ

∫ tk
tk−1

ζ(t) dt = h2eθ
∫ tk

0 ζ(t) dt. (A.9)

Thus, we conclude the induction proof. Therefore, by applying the standard interpolation estimate and
(A.2), we get

max
k=0,...,m

|Xk − xk
h|2H1 ≤ (C + ed1CT )h2, CT :=

∫ T

0
ζ(t) dt. (A.10)

Summing (A.9) from k = 1, . . . , m and noting the interpolation estimate, we derive
m∑

k=1

τ‖∂tX(tk) − δτ xk
h‖2

L2 ≤ Ch2 + C
m∑

k=1

τh2eθ
∫ tk

0 ζ(t) dt + Cd2
0h2ed1CT ≤ C(1 + d2

0)e
d1CT h2. (A.11)

The proof (A.1) is completed by combining (A.10) and (A.11). �
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